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ABSTRACT 

This report studies the spatial distribution of X-band, high resolution and high grazing 
angle polarimetric sea clutter data. The K distribution usually provides a good fit for 
the distribution of the VV polarised data. The HH polarised data is spikiest and its 
distribution exhibits a sudden departure from the K distribution in the tail region, 
which usually requires the KA or the similar distributions to achieve a better fit in the 
tail region. Due to drawbacks of the KA distribution, this report proposes the KK and 
WW distribution models to fit the distribution of sea clutter with spikes. It is found 
that the KK distribution provides overall the best fit. Distributions of the sum of K and 
Weibull distributed samples are also presented.     
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This report contributes to the delivery of Milestone 4.1.1.1.1: High grazing angle sea 
clutter and target signatures in the AIR 7000 S&T Plan (Annex C – Technical Support 
Plan). The outcomes of the analysis contained herein will also form a component of the 
model delivered for Milestone 4.1.1.1.2: Radar modelling capability development – maritime 
of the Technical Support Plan. These activities are aimed at better understanding the 
radar performance drivers for operation of High Altitude Long Endurance (HALE) 
unmanned aerial vehicles (UAVs) in the maritime surveillance role, and therefore 
reducing risk in any acquisition decision. 

Sea clutter distributions have been studied for many decades. However most of these 
studies are based on sea clutter data collected at low grazing angles and for 
applications of radar mounted on ships or at the coast. Very little analysis of high 
grazing angle sea clutter has been published in the open literature. The next generation 
of airborne maritime radar surveillance systems, such as high altitude UAVs, views the 
sea surface at much higher grazing angles. Sea clutter returns at low grazing angles are 
often dominated by multipath, shadowing and ducting mechanisms, whereas the 
Bragg scattering from rough surfaces and scattering from whitecaps often dominate at 
high grazing angles. These different scattering mechanisms mean that the nature and 
characteristics of sea clutter at high and low grazing angles are different. In addition, 
the resolution of the future radar tends to be higher. The finer the radar resolution, the 
more discrete sea spikes in sea clutter. Understanding and modelling of such spikes are 
important for the prediction of radar performance and for guidance in developing 
improved target detection algorithms. Therefore searching for distribution models 
which provide precise distribution agreement especially in the tail region is necessary 
in sea clutter distribution studies in order to improve radar performance.  

In support of Project AIR 7000, DSTO conducted a sea clutter collection trial in the 
Southern Ocean approximately 100 km south of Port Lincoln in South Australia in 2004 
using the DSTO developed X-band, fully polarised airborne radar imaging system, 
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Ingara. Data were collected with incidence angle varying from approximate 45o to 80o, 
on 8 separate days over an 18-day period. The wind and wave conditions were also 
recorded using a wave buoy deployed nearby and the information provided by the 
Royal Australian Navy’s Directorate of Oceanography and Meteorology, and the 
Australian Government Bureau of Meteorology.  

The data used in this report are real aperture high range resolution (0.75 m) data with 
the radar operated in a circular spotlight mode. The radar could therefore be 
considered to look at the same spot but with different incidence and azimuth angles. 
Each dataset used in the analysis consists of approximately 106 samples, corresponding 
to a span of 3.5o to 8o in incidence angle change, depending on nominal incidence 
angle, and a span of 5o in azimuth angle change. Since the nominal incidence angle is in 
the plateau region and the span of the azimuth angle is narrow, we can consider the 
data distribution to be as the spatial distribution. The size of the samples in each 
dataset provides a reliable data distribution up to 1-cdf equal to the 10-5 level. 

It is found that the mean clutter varies periodically in azimuth with the maxima and 
the minima in the upwind and crosswind directions, respectively, and the second peak 
in the downwind direction. The shape parameter of clutter distributions, however, 
does not show a noticeable azimuthal pattern correlating to wave/wind directions.  

The VV polarised data is with the lowest spiky level compared to the HH and HV data. 
In general the VV data can be fitted by a K distribution with the shape parameter 
varying from about 4 to 25.  

The HH polarised data is spikiest and its distribution exhibits a sudden departure from 
the K distribution in the tail region, often in the region of 1-cdf (cumulative 
distribution function) equal to 10-3 and beyond. The phenomenon of the sudden 
departure is believed to be attributed by sea discrete spikes. The finer the radar 
resolution, the severer is the phenomenon. This observation indicates that the 
traditional K distribution might not be precise enough to model the distribution of sea 
clutter with spikes. 

The KA distribution, which has been more recently proposed in the literature to model 
the distribution of sea clutter with spikes, has significantly improved the agreement 
between the data and model distributions in the tail region. However, the KA 
distribution cannot be expressed in closed form, so it is computationally very 
expensive. It also imposes a difficulty for the analysis of radar performance, as the 
analysis often involves the clutter distribution function. Aimed at simplifying the 
distribution function, this report proposes a KK distribution, which is a mixture of two 
K distributions of which one representing the distribution of Bragg/whitecap 
scatterers and the other for the distribution of sea spikes. It shows that the KK  
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distribution is as good as the KA distribution in terms of agreement in the tail region. 
In addition, the KK distribution introduces the least distortion to the K distribution in 
the low and mid regions. Mathematically, a KK distribution is simply a sum of two K 
distributions. 

Since the Weibull distribution is very close to the K distribution, this report also 
proposes a WW distribution to improve the agreement between the data pdf and the 
modelled pdf in the tail region. A WW distribution is a mixture of two Weibull 
distributions. In general, a Weibull distribution converges a little faster than a K 
distribution for shape parameters normally found in sea clutter statistics, which often 
leads to a bigger discrepancy between the data pdf and the Weibull pdf in the tail 
region. The Weibull fit, even for the VV data is not as good as the K fit. This however 
can be compensated if a WW distribution is used, as the convergence of the WW 
distribution is tuneable. The results show that the fitness of the WW distribution in the 
tail region is comparable to the KK or KA distribution. However, in the low and mid 
region, the agreement between the data pdf and the WW pdf is not as good as that 
between the data pdf and the KK (or K) pdf. 

The use of the KA, KK and WW distributions improves the agreement between the 
data and fitted distributions in the tail region. It is shown that the difference between 
the data cdf and the K cdf for the HH polarised data at the 1-cdf equal to 10-5 level can 
be as big as about −7dB, but the difference can be reduced to about ±1dB if the KK 
distribution is used to model the data distribution. Since the KK distribution provides 
the least distortions to the K distribution in the low and mid regions, the fit 
improvement in the tail region does not worsen the agreement in the low and mid 
region.  

The report also proves that a Weibull distribution can be transformed to a Rayleigh or 
gamma distribution and vice versa through a non-linear but simple mapping. 
Therefore, in the case where clutter data is modelled as a Weibull distribution, the data 
may be first transformed accordingly and then treated as a Rayleigh or gamma 
distribution, as the Rayleigh or gamma distribution is much easier to be dealt with. For 
simulation, a Weibull distributed dataset can be easily generated from a transform of a 
Rayleigh distributed dataset.  

CFAR schemes often employ local statistics of clutter to adaptively set the threshold for 
target detection. This report also discusses the distribution of the sum of K or Weibull 
distributed samples. A formula in closed form approaches the distribution of the sum 
of Weibull distributed samples, which does not have close form, has been proposed. Its 
correctness has been numerically verified using both the convolution method and 
simulated data. No noticeable error between the values given by the formula and the 
values numerically computed from the convolution method or simulated data has been 
found. 
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1. Introduction   
Sea clutter distributions have been studied for many decades. However most of these 
studies are based on sea clutter data collected at low grazing angles and for 
applications of radar mounted on ships or at the coast. The next generation of airborne 
maritime radar surveillance systems, such as high altitude unmanned aerial vehicles 
(UAVs), views the sea surface at much higher grazing angles. Sea clutter returns at low 
grazing angles are often dominated by multipath, shadowing and ducting 
mechanisms, whereas the Bragg scattering from rough surfaces and scattering from 
whitecaps often dominate at high grazing angles (Long, 2001). These different 
scattering mechanisms indicate that the nature and characteristics of sea clutter at high 
and low grazing angles should be different. Very little analysis of high angle sea clutter 
has been published in the open literature. 

In support of Project AIR 7000, DSTO conducted a sea clutter collection trial in the 
Southern Ocean approximately 100 km south of Port Lincoln in South Australia in 2004 
using the DSTO developed X-band, fully polarised airborne radar system, Ingara 
(Crisp et al, 2006). Data were collected with incidence angle varying from approximate 
45o to 80o, on 8 separate days over an 18-day period. The data used in this report was 
real aperture high range resolution (0.75 m) data with the radar operated in a circular 
spotlight mode. The radar can therefore be considered to look at the same spot but 
with different azimuth and elevation angles. The wind and wave conditions were also 
recorded using a wave buoy deployed nearby and additional information was 
provided by the Royal Australian Navy’s Directorate of Oceanography and 
Meteorology, and the Australian Government Bureau of Meteorology.  

This report concentrates on clutter distribution studies. Other topics such as 
correlation, optimal polarisation for discriminating small targets from clutter etc will 
be reported in the future. In this report we pay less attention to the physical modelling 
but focus on the distribution studies. The K and Weibull distributions are widely used 
to fit sea clutter distribution (Jao, 1984, Watts, 1985, 1987, Ward et al, 1990, Oliver, 1993, 
Antipov, 1998, Billingsley, 2002) and the lognormal distribution is also reported in 
some cases (Long, 2001). More recently, the KA distribution has been suggested to 
improve the fit in the tail region, usually in the region of 1-cdf (cumulative distribution 
function) equal to 10-3 and beyond (Ward and Tough, 2002, Watts and Tough, 2005). It 
is important to have the fit in the tail region as precise as possible, so that the constant 
false alarm rate (CFAR) based detection algorithms and radar performance analysis 
can be processed accurately.  

We first review the K and Weibull distributions in Sections 2 and 3, respectively. Data 
with known distributions and parameters are generated, and the accuracy of 
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parameter estimation schemes is quantitatively assessed. We derive in Section 3 that a 
Weibull distribution can be transformed to a Rayleigh or gamma distribution and vice 
versa.  One immediate application of this derivation is that a Weibull distributed 
dataset can be generated simply from a Rayleigh distributed dataset. In radar 
applications, if clutter is Weibull distributed, the data can be transformed into the 
Rayleigh or gamma distributed for further processing.  

CFAR processing schemes set the detection threshold adaptively based on the local 
statistics of clutter. An example of such a scheme is the cell averaging (CA) CFAR 
which set the threshold adaptively by estimating the sum /mean level in a window of 
N range samples surrounding the cell under test (CUT). We need therefore to study the 
distribution of the sum / mean of N K or Weibull distributed samples. Subsection 2.2 
discusses the distribution of the sum of N K-distributed samples. A formula in closed 
form approximating the sum of N Weibull distributed samples is proposed in 
Subsection 3.3.  

Section 4 investigates the distribution of the sea clutter collected by DSTO. The co-
polarised HH and VV as well as the cross-polarised HV data are studied. Discrepancies 
between the data and the fitted K and Weibull distributions indicate that the 
traditional K or Weibull distribution generally provides a conservative estimation in 
the tail region. This also drives us to search for better distribution models.  

Section 5 discusses the KA distribution, which, by adding a component of sea spikes 
modelled as a discrete Poisson distribution, significantly improves the fit in the tail 
region. Since it cannot be expressed in closed form, the KA distribution is 
computationally expensive, and imposes a difficulty in the derivation of CFAR 
algorithms and radar performance analysis. A KK distribution (a mixture of two K-
distributions) and a WW distribution (a mixture of two Weibull distributions) are 
proposed in Sections 6 and 7, respectively, to tackle the spike problem as the KA 
distribution does. Both the KK and WW distributions have the similar capability as the 
KA distribution to deal with the spike problem. Mathematically, however, the 
proposed KK and WW distributions are much simpler. 

Finally Section 8 concludes the report. 

2. K Distribution 
Many studies have shown that sea clutter obeys a K distribution (Jao, 1984, Watts, 
1985, 1987, Ward et al, 1990, Antipov, 1998, Oliver, 1993, Billingsley, 2002, Long, 2001). 
The K distribution has a phenomenological interpretation that clutter returns consist of 
a fast varying component modulated by a slow varying component. The slow varying 
component, also referred to as the varying local mean level, is root gamma distributed, 
and the fast varying component, referred to as speckle, is Rayleigh distributed (Watts, 
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1985, Ward et al, 1990, Watts, 1999). The primary difference between these two 
components lies in their temporal correlation properties. The speckle is largely 
decorrelated by radar frequency agility while the modulating component is not. Thus a 
radar system with pulse to pulse frequency agility will measure approximately 
unchanged value for the slow component over a beam dwell time (Ward and Tough, 
2002). 

For clutter modelling, some authors prefer using amplitude (linear detection), while 
the others use intensity (square law detection). This report adopts the amplitude 
distribution. In general, the distribution transform from one domain to the other can be 
readily done by,  

dvduupvp /)()( =  (1) 

once the relation )(vuu =  ( )(vu  is monotonic), derivative dvdu /  and the probability 
density function (pdf) )(up  are known. 

According to the expression for the compound K distribution (Watts, 1985, 1999), the 
pdf of the slow varying component, which is root gamma distributed, is given by, 

)exp()(
)(

2)( 2212 ybbybyp −
Γ

= −ν

ν
 (2)  

where ν is a shape parameter, b  is an intermediate scale parameter whose expression 
is given shortly, and )(⋅Γ is the gamma function. 

The fast varying component, which is Rayleigh distributed, is, 

)
4
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2

)|( 2

2

2 y
x

y
xyxp ππ

−=  (3) 

The K-distributed function is the integral of (3) with respect to y , as, 
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where )(1 ⋅−νK  is a modified Bessel function of the second kind of order 1−ν  and c  is a 
scale parameter whose expression is, 
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)(

+Γ
Γ

= ν
ν

π
x

c  (5) 



     
 
DSTO-RR-0316        
 
 

 
 

4  
 
 

The relationship between b  and c  is 4/2 πbc =  and }{xEx =  is the mean value of 
x . 

)2/1(
)(

+Γ
Γ

= ν
ν

π
c

x  (6) 

The second moment of x  is, 

22
2 4)1(

)(
4

cc
x νν

ν
=+Γ

Γ
=  (7) 

We often plot the clutter pdf on a log scale. To do so, let xz 10log20= , using the 
transform (1), we can write the K distribution of (4) on the dB scale as, 

)10(10
2

10
)(

2)( 20/
1

20/20/
0

zzz cKcckzp −⎟
⎠
⎞

⎜
⎝
⎛

Γ
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  (8) 

where 20/10ln0 =k  and )ln(⋅  is the natural logarithmic function. The first moment of 
z  is found to be (Dong, 2004), 
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where )()( xnψ  is the Polygamma function, defined as the th)1( +n  derivative of the 

logarithm of the Gamma function, ( ))(ln1

1

x
dx
d

n

n

Γ+

+

. Table 1 summarised the main 

properties of the K distribution. 

Table 1: Properties of the K distribution in linear and log domains. 

Property Linear domain Log domain 
Pdf 
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2.1 Parameter Estimation 
The K distribution given by (4) has two parameters: scale factor c  and shape 
parameter ν  which are normally unknown for arbitrary sea clutter data, even if the 
data is assumed to be K-distributed, and have to be estimated. There are various 
estimation schemes, and perhaps the most popular method is the maximum likelihood 
(ML) method which provides optimal parameter estimates in the sense that these 
estimates are the most probable parameters for the given data and pdf if there is no 
prior knowledge (Oliver, 1993 Antipov, 1998). For the K distribution, however, we 
cannot express the ML parameter estimates in closed form since the derivative of 
Bessel function )(1 ⋅−νK  does not exist in closed form. Using the Mellin transform, Oliver 
(1993) has derived an asymptotic expression for the K distribution, in which the K 
distribution is expressed as a gamma distribution with a modified factor. The 
corresponding approximate ML estimates for the asymptotic expression have then 
been derived. However, the resultant ML estimates are only applicable to the limit of a 
large number of looks in multi-look processed data such as synthetic aperture radar 
(SAR) data. Dong (2004) has proposed an algorithm searching the optimal parameters 
that maximise the log-likelihood function (eg, the log-marginal pdf). It is in an iterative 
algorithm, but does not require the derivatives of the Bessel function. We have found 
however, the proposed searching algorithm does not always work for K-distributed 
data in practice. The method is based on the product of the marginal pdfs of all data 
samples. If there exist some samples whose values are extremely small or large, then 
the pdf of these samples would be approaching zero. If the numerical precision of the 
Bessel function is limited (e.g. as in the standard MATLAB library) then the numerical 
value of these marginal pdfs becomes zero (minus infinity in the log domain) and the 
method fails.  

Apart from the ML method, there are a number of moment-based methods which have 
been reviewed by Redding (1999). The algorithm using the first moment in the linear 

domain, ∑=≈
=

N

i
ix

N
xx

1

1ˆ  and the first moment in the log domain, ∑=≈
=

N

i
iz

N
zz

1

1ˆ  

together to estimate the scale and shape parameters usually provides a very close 
result to the ML estimate (Blacknell, 1994, Dong 2004).  Blacknell (2001) also proposes a 
parameter estimation method based on statistics of )(log10 xx  and the results are said 
to be comparable to that of the moment ( x  and z ) method, but computationally less 
expensive. 

To examine the accuracy of estimation schemes, datasets with known scale and shape 
parameters were generated. Since the correlation property (either temporal or spatial) 
of clutter is not involved in the above K distribution model, K-distributed clutter data, 
without considering its correlation property, can therefore be generated using (2) and 
(3) together. Figure 1 shows the pdf of the simulated data with the designated 
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distribution. The dataset contains 610  samples with 3162.0=x  ( dBx 10log20 10 −= ) 
and 75.3=ν .  
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(a) pdf abscissa on linear scale to view global fit 
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(b) pdf abscissa on log scale to view tail fit  

Figure 1: Simulation of the K distribution. The blue line is the pdf of the designated K 
distribution and the pink dots are the pdf of the simulated data.  

The accuracy of parameter estimation was quantitatively assessed using 100 
simulations. In each simulation, the mean and the shape parameters were randomly 
generated, but confined within pre-defined ranges. In particular, the mean was 
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confined in the range of -20dB to 0dB1, and the shape parameter was in the range of 0.3 
to 5. The number of samples in each simulation was 610 . 

The estimation accuracies for the mean and the shape parameter are shown in Figure 2 
to Figure 4. We can see from Figure 2 that the mean estimation is accurate and stable, 
and the relative error is confined within %25.0± . Shown in Figure 3 is the shape 
parameter estimation using the first and second moments in the linear domain, i.e., (6) 
and (7). It can be seen that the estimation scheme is very unstable. While some 
estimates are at a relatively accurate level, other estimates are very poor and their 
relative error can be as large as −100%. Figure 3 also shows that the estimation error 
tends to be biased, with the relative error being predominantly negative. The shape 
parameter estimation using the first moment in the linear domain and the first moment 
in the log domain, i.e., (6) and (9), is shown in Figure 4. The estimates of this scheme 
are stable and the relative errors are generally confined within %1± . It is also found 
that the absolute value of the relative error in Figure 4 is proportional to the value of 
the shape parameter. The larger the shape parameter, the larger the absolute value of 
the relative error in general. This is because as the shape parameter increases, the pdf 
become less and less sensitive to the shape parameter. Therefore, for cases with a large 
shape parameter, the estimation accuracy may be low, but the agreement between the 
estimated and data pdfs does not necessarily become poorer.  
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Figure 2: The relative error of 100 mean estimates. 

                                                      
1 The mean is specified in the linear domain, but expressed in dB, that is, x10log20 , which is 
normally different from z , the mean directly specified in the dB domain (refer to Table 1). 
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Figure 3: The relative error of 100 shape parameter estimates using the first and second 
moments in the linear domain. 
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Figure 4: The relative error of 100 shape parameter estimates using the first moment in the 
linear domain and the first moment in the log domains. 

It can be concluded from the above 100 simulations that the shape parameter 
estimation using the first moments in the linear and log domains, i.e., (6) and (9) 
together, is accurate and stable. 

2.2 Distribution of the Sum of Uncorrelated K-distributed Samples 
CFAR processors often utilise statistics of range cells surrounding the range CUT to 
determine if the CUT contains signals of targets. An example of such a processor is CA-
CFAR, which adaptively sets a threshold by estimating the sum / mean level of a 
window of N range cells. Assuming that the global clutter distribution is the K-
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distributed, we need to find the distribution of the sum of N such samples. In doing so 
we also assume that the range samples are uncorrelated. 

For a K-distributed dataset with arbitrary shape parameter ν , the distribution of the 
sum of N such samples cannot in general be expressed in closed form and has to be 
calculated numerically using the convolution method. For the special cases of the 
shape parameter 5.0=ν , 5.1=ν  and 2

3+= mν , L,2,1=m , closed-form expressions 
have been found (Armstrong and Griffiths, 1991).  

For 5.0=ν , the K-distribution (4) can be written as, 

)exp()( cxcxp −=  (10) 

which is a special case of the gamma distribution of (11) shown below with the shape 
parameter 1=a . 

)exp(
)(

)( 1 cxx
a

cxf a
a

−
Γ

= −  (11) 

It is well known that the distribution of the sum of N  independent gamma distributed 
samples with a shape parameter a  is still the gamma-distributed but with a shape 
parameter Na , as (Wilks, 1962), 

)exp(
)(

)( 1 cxx
Na

cxf Na
Na

N −
Γ

= −  (12) 

Therefore, one can write the pdf of the sum of N  K-distributed samples with a global 
shape parameter  5.0=v , as, 

)exp()(
)(

)( 1 cxcx
N
cxp N

N −
Γ

= −  (13) 

For 5.1=v , we can derive, 

)exp()( 2 cxxcxp −=  (14) 

which is a case of the gamma distribution with the shape parameter 2=a . Therefore 
the pdf of the sum of N such samples is, 

)exp()(
)2(

)( 12 cxcx
N

cxp N
N −

Γ
= −  (15) 
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For 2
3+= mv , L,2,1=m , the pdf of the sum of the N samples is given by (Armstrong 

and Griffiths, 1991), 
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where 

)(2 1 ν
πγ
Γ

= +m
c

 (17) 

!2
)1()!(

i
imim

ii
−++

=β  (18) 

To verify the correctness of (16), a simulated dataset was generated. The dataset 
contains 6108×  uncorrelated samples obeying the K distribution with a shape 
parameter 2

35 +=ν , and a mean of 0.1=x . The pdf of the dataset and its theoretical 
pdf are shown in Figure 5 (the left distribution). The dataset was then regrouped to 

610  samples and each was the sum of 8 original samples ( 8=N ). The pdf of the 
regrouped dataset and its theoretical pdf are also shown in Figure 5 (the right 
distribution). The agreement between the pdfs confirms the correctness of (16). 
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Figure 5: Two simulated distributions (pink dots) and their theoretical distributions (blue 
lines). The left distribution is of a K-distributed dataset with a shape parameter of 
6.5. The right one is the distribution of the sum of 8 original samples.  
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3. Weibull Distribution 

3.1 Weibull Distribution 
Sea clutter data are also reported to be Weibull distributed (Billingsley, 2002, Long 
2001). The pdf of a Weibull distribution is given as, 

)exp()( 1 bb cxbcxxp −= −               0>x  (19) 

where b  is the shape parameter and c  is the scale parameter2. The properties of the 
Weibull distribution can be found elsewhere (Billingsley, 2002, Dong, 2004), and Table 
2 lists the main properties of the Weibull distribution. 

There are two special cases where the Weibull distribution is identical to the K 
distribution. One case is 2=b  for the Weibull distribution and ∞=ν  for the K 
distribution, in this case both distributions are identical to the Rayleigh distribution. 
Theoretically, the distribution of sea clutter data cannot be better than the Rayleigh 
distribution, therefore 2=b  should be the upper boundary if sea clutter distribution is 
fitted by the Weibull distribution. Another case is 1=b  for the Weibull distribution 
and 5.0=ν  for the K distribution, in this case the two distributions are identical to the 
gamma distribution (Dong, 2004)3. The range 21 << b  for the Weibull distribution 
corresponds to the range ∞<<ν5.0  for the K distribution. Another interesting point 
is that in the range 1<b  ( 5.0<ν ) the K- distribution converges faster than the Weibull 
distribution (the tail of the K distribution is shorter) whereas in the range 21 << b  
( ∞<<ν5.0 ) the K distribution converges more slowly than the Weibull distribution 
(the tail of the K distribution is longer) (Dong, 2004). High grazing angle sea clutter 
data collected by the Ingara system is found normally in the 21 << b  range (refer to 
Section 4)4, therefore the convergence of the K distribution fit is normally slower than 
that of the Weibull distribution fit.  

                                                      
2 To be consistent with literature, symbols c  and b  are used in both the K and Weibull 
distributions. However, there should be no confusion from the context. 
3 In Dong’s report (2004), the pdf of intensity was discussed. Therefore the two cases are (1) 

1=b  for the Weibull distribution and ∞=ν  for the K distribution and (2) 5.0=b  for the 
Weibull distribution and 5.0=ν  for the K distribution. 
4 The case of 1<b  ( 5.0<ν ) for sea clutter at low grazing angles has been reported, see Watts et 
al (2005).  
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Table 2: Statistics of the Weibull distribution in the linear and log domains: 

Property Linear domain Log domain 
Pdf )exp()( 1 bb cxbcxxp −= −  )10exp(10)( 20/20/

0
zbzb cbckzp −=  

Cdf )exp(1)( bcttxP −−=<  )10exp(1)( 20/tbctzP −−=<  
First moment 

b
b

c
x /1

1 )1( +Γ
=  )ln)1((1 )0(

0

c
bk

z +−= ψ  

Second moment 2

12

2
2

)1(
)1( xx
b

b

+Γ
+Γ

=  2
22

0

2
2

6
z

bk
z +=

π
 

 
The ML parameter estimates for the Weibull distribution exist in an iterative solution 
which involves data samples and is computationally expensive. (Oliver, 1993, Dong, 
2004), 

Similarly, the estimation using the first moment in the linear domain and the first 
moment in the log domain provides stable results very close to the ML estimates. 

3.2 Transformation between Weibull and Rayleigh, Weibull and 
Gamm Distributions 

A Weibull distribution with arbitrary parameters can be transformed to a Rayleigh or a 
gamma distribution and vice versa. The significant advantage of such transformation is 
that the statistics and characteristics of the Rayleigh distribution are well known, and 
radar performance and target detection schemes such as CFAR under the Rayleigh 
environment have been well studied, documented and implemented in radar systems. 
Supposing that x  is Weibull distributed and whose pdf is given in (19), let 

b

cs
tx

/1

2

2

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  (20) 

we have 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−== 2

2

2 2
exp)()(

s
t

s
t

dt
dxtxptp               0>t  (21) 

It is well known that )(tp  is a Rayleigh distribution for the amplitude of a complex 
variable whose real and imaginary parts are mutually uncorrelated and each obeys a 
normal distribution with zero mean and standard deviation of s , designated as 

),0( sN . It is not difficult to calculate, 
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2/)(
0

πsdtttpt =∫=
∞

 (22) 

and 

2

0

22 2)( sdttptt =∫=
∞

 (23) 

Based on the above derivation, any dataset having a Weibull distribution can be 
transformed to a Rayleigh distribution and vice versa using the mapping function (20) 
provided that parameters b  and c  are known or have been estimated. To 
demonstrate, a dataset comprised of 610 complex samples was generated. The real and 
imaginary parts of samples are uncorrelated but each part obeys the normal 
distribution with zero mean and standard deviation of 2//1 π=s . We then chose 

2/1=b  and )/11( bc b +Γ=  (the selection of these parameters makes 1=t  for the 
Rayleigh distribution and 1=x  for the Weibull distribution) to transform the data 
using (20). The distributions of simulated data before and after the transformation, as 
well as the theoretical Rayleigh and Weibull distributions are plotted in Figure 6. It can 
be seen that the Rayleigh distributed data are now transformed to the Weibull 
distributed data.  

Letting bxt = , we transform the Weibull distribution (19) to the gamma distribution 
(10). The detailed simulation for this transformation is omitted. 
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(a) pdf abscissa on linear scale to view global fit 
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(b) pdf abscissa on log scale to view tail fit 

Figure 6: Simulated Rayleigh distribution (the narrow one) and its transformation to the 
Weibull distribution (the wide one). The blue lines and pink dots correspond to the 
distributions of theory and the distributions of simulated data.  

3.3 Distribution of the Sum of Uncorrelated Weibull Distributed 
Samples 

Statistical properties of the Weibull distribution and their applications particularly in 
CFAR schemes have been widely discussed (Anastassopoulos and Lampropoulos, 
1995, Levanon  and Shor, 1990, Sekine and Mao, 1990). Letting bxt =  we transform the 
Weibull distribution (19) to the gamma distribution (11) with the shape parameter of 1. 
The distribution of the sum of N transformed samples is therefore, 
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)exp(
)(

)( 1 ctt
N

ctp N
N

N −
Γ

= −  (24) 

The equation (24) applies only to the transformed data.  

The distribution of the sum of the Weibull distributed data cannot in general be 
expressed in closed-form, because the integral below does not have closed form for an 
arbitrary shape parameter b . 

dxxpxtptp
t

NN )()()(
0

1∫ −= −  (25) 

where  L,3,2=N , and )()(1 xpxp =  

We propose a formula for the distribution of the sum of Weibull distributed data in 
(26). Since the close-form formula is not existed, the proposed formula (26) is only an 
approximation.  

))(exp()(
)(

)( 1 bbN
N

N xrcxr
N

bcrxp −
Γ

= −  (26) 

where  

)1()(
)(

1

1

b

b

NN
Nr

+ΓΓ
+Γ

=  (27) 

The parameter r  can be considered as a scale parameter, so that the first moment (the 
mean) of the distribution (26) is equal to the mean of the sum of the N Weibull 
distributed data. 

The first moment of (26) is, 

∫
Γ

+Γ
==

∞

0
/1

1

)(
)()( b

b
N cNr

Ndxxxpμ  (28) 

The mean of the sum of the N Weibull distributed samples is (refer to Table 2) 
b

b cNxN /11 )1( −+Γ= . Letting xN=μ  results in (27). 

Except for the special case of 1=b  when the Weibull distribution is identical to the 
gamma distribution (11), the derivation of (26) cannot be established. As we know that 
there is no closed form for the distribution of the sum of Weibull distributed samples, 
the proposed formula is therefore at most an approximation. The remaining questions 
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are that firstly if the expression of (26) is rational and secondly how big the error is 
between the proposed formula and the true distribution. To answer the first question, 
we notice that the Weibull distribution (19) is a generalised gamma distribution, and 
therefore, the distribution of the sum of Weibull distributed samples should also be a 
generalised gamma distribution. The expression of (26) is indeed a generalised gamma 
distribution. To answer the second question, the error may be evaluated by comparing 
the result of (26) and the numerical evaluation of (25), representing the true 
distribution. The numerical evaluation of (25) is also referred to as the convolution 
method, as the integral has the convolution form (Wilks, 1962). Figure 7 compares the 
results of (25) and (26) with 345.1=b , 123.0=x , 2=N  and 8=N . It can be seen that 
the two pdfs convoluted using (25) and the two pdfs calculated using the proposed 
formula (26) are virtually identical even in the very far tail region for both cases.  
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(a) pdf on the linear scale to view the global agreement 
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(b) pdf on the log scale to view the tail agreement 

Figure 7: Two distributions are the pdfs of the sum of 2 (the left distribution) and the sum of 8 
(the right distribution) Weibull distributed samples. The blue lines and pink dots 
correspond to (25) and (26), respectively. 

To further confirm the correctness of (26), we show below two examples using 
simulated data. In the first example, we let 345.1=b  (recall that 21 << b  for the 
Weibull distribution corresponds to ∞<<ν5.0  for the K distribution) and 123.0=x . 
The original Weibull distributed dataset contained 61010×  samples. The data were 
regrouped in to 610  samples and each was the sum of 10 original samples ( 10=N ). 
The two distributions, one for the original Weibull distributed data and the other for 
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the sum of 10 original samples are shown in Figure 8. The second example used the 
following parameters: 65.0=b  (recall that 1<b  for the Weibull distribution 
corresponds to 5.0<ν  for the K distribution) and 123.0=x . The original datasets 
contained 6105×  samples, which were then regrouped to 610  samples and each was 
the sum of 5 original samples ( 5=N ). The corresponding distributions are shown in 
Figure 9. With the support of these two examples we can accept (26) as a very good 
approach to the close-form for the distribution of the sum of Weibull distributed data. 
The error between (26) and numerical results of (25) is too small to be observed in the 
range of interest. 
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Figure 8: Two distributions of Example 1. The left and right distributions are for the original 
Weibull distributed samples and the sum of 10 original samples, respectively. In 
each distribution, the pink dots and the blue lines represent the data distributions 
and the theoretical distributions, respectively.  
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Figure 9: Two distributions of Example 2. The left and right distributions are for the original 
Weibull distributed samples and the sum of 5 original samples, respectively. In each 
distribution, the pink dots and the blue lines represent the data distributions and the 
theoretical distributions, respectively. 

3.4 CA CFAR Threshold 
Using (26) we can determine the threshold  T  used in CA CFAR detection scheme by 
the following integral, 

∫ −=∫ ≥=
∞∞

00
0 )(])(exp[)()( dxxpTxcdxxpTXXPP N

b
Nfa  (29) 

Consequently, (29) after some manipulations becomes 

( ) Nbfa

r
T

P

⎥⎦
⎤

⎢⎣
⎡ +

=
1

1
 (30) 

where N  is the size of the process window. Obviously if 1=b , (30) simplifies to the 
well-known formula, 

[ ]Nfa T
P

+
=

1
1

 (31) 

An Optimal Weibull (OW) CFAR, in the maximum likelihood sense, for Weibull 
distributed clutter has been proposed (Anastassopoulos and Lampropoulos, 1995). The 
proposed estimator is derived through the distribution of a new variable t  defined as, 
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∑=
=

ξ  (32) 

where )/11( b+Γ=ξ . 

The threshold owT  of the proposed estimator is given by, 

( ) Nb
ow

fa

N
T

P

⎥
⎦

⎤
⎢
⎣

⎡
+

=
ξ1

1
 (33) 

The OW-CFAR estimator works in the following way. For given false-alarm rate faP , 

window size N   and shape parameter b , the threshold owT  is determined. For each 
CUT x , the value of t  for the companioned window is computed. If tTx ow> , target 
presence is declared and vice versa.  

Using the Monte Carlo simulation method, we compared the proposed CA-CFAR 
detector to the OW-CFAR detector. We generated a Weibull distributed dataset 
containing one million samples with an random shape parameter confined in the range 
of 25.0 ≤≤ b . The false-alarm rate was set to 410−=faP  and the window size was 24 
and 32, respectively. The actual false-alarm rate was calculated via test of all samples. 
The simulation was repeated 100 times and the results are shown in Figure 10. It can be 
seen that the two estimators performs approximately the same. However, the proposed 
CA-CFAR is much simpler as it only requires the sum over the window, whereas the 
OW-CFAR invokes nonlinear manipulation of the window as indicated in (32). 
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(a) 24=N  
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(b) 32=N  

Figure 10: Actual false-alarm rates of CA-CFAR and OW-CFAR estimators in the 
environment of Weibull clutter. The false-alarm rate was set to 10-4. 

4. Sea Clutter Data Analysis 
Extensive X-band sea clutter data has been collected at high grazing angles in the Sea 
Clutter Trial 2004 (SCT04) from the Southern Ocean approximately 100km south of 
Port Lincoln, South Australia in August 2004, using the DSTO developed airborne X-
band fully polarised radar system, Ingara. Details of the trial and some data analysis 
can be found in the DSTO report, DSTO-TR-1818 (Crisp et al, 2006).  

4.1 Dataset Descriptions 

The SCT04 trial collected data at the incidence angle approximately varying from 45o to 
80o on 8 separate days in a period of 18 days. This report primarily studies the datasets 
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of run34683 and run34690, collected on 16/08/04 at approximately 10:52am to 11:27am 
local time, and processed as real aperture data. The radar was operated in the circular 
spotlight mode, and therefore, it can be considered that the radar looked at 
approximately the same spot of the sea surface but at different incidence angles 
(different runs) and different azimuth angles (same run but different datasets). Each 
run has a nominal incidence angle and consists of about 72 datasets to cover the whole 
360o azimuth angles. Each dataset which was processed to cover an azimuth angle 
span of 5o, contains approximately 920 pulses, and the number of the range 
compressed samples is 1024 at a range resolution of 0.75m. Therefore each dataset, 
which contains about 1024920×  samples, has a slant range coverage of 750m, 
corresponding to a incidence angle span of 3.5o to 8o depending on the nominal 
incidence angles, and an azimuth angle span of 5o. Table 3 lists some radar parameters 
used in the SCT04. 

Table 3: Radar parameters 

Parameter Value 
Centre frequency 10.1 GHz 
Bandwidth of LFM 200 MHz 
Polarisation Full 
Pulse width 20 μs 
Altitude 2314 m for nominal incidence angle of 50o 

1353 m for nominal incidence angle of 70o 
Incidence angle 51.3o for run34683 and 67.2o for run34690 

4.2 Wind and Wave Ground-Truth 
Wind and wave ground-truth data were collected during the SCT04 trial and details 
have been reported (Crisp et al, 2006). The wind and wave parameters on the day of 
16/08/04 at the approximate clutter collection time are shown in Table 4 and Table 5, 
respectively. These parameters are retrieved from the Australian Government Bureau 
of Meteorology (BoM) Automatic Weather Station (AWS) data and a wave buoy 
deployed near the site. It can be seen that the wave direction and the wind direction 
are significantly separated from each other and this is in fact not uncommon. The sea 
state is dependent on both the swell and the local wind waves. The swell is generated 
by distant storms or a constant wind blowing for long duration and fetching a long 
distance (Skolnik, 2001, Chapt 7). The swell is therefore not related to the local wind 
directions. The wave information in Table 5 probably reflects the swell rather than the 
wind waves.  
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Table 4: Wind speed and direction at the mid-data collection time. 

Wind speed (m/s) Wind direction(o) Date 
AWS BoM model AWS BoM model 

16/08/04 9.3 7.1 68 47 

Table 5: Wave height and direction at the mid-data collection time. 

Wave height (m) Wave direction(o) Date 
Buoy BoM model Buoy BoM model 

16/08/04 2.5 2.4 169 211 
 

4.3 Sea Clutter as a Function of Azimuth Angle 
It is well known that sea clutter is a function of azimuth angle even if other parameters 
remain unchanged (Ulaby et al, 1982, p. 855). Clutter in the upwind direction is 
strongest. The weakest clutter is either in the downwind or crosswind direction, 
depending on the sea surface conditions and the radar parameters (Skolnik, 2001, 
Chapt 7). The mean of the sea clutter of run34683 and run34690 is shown in Figure 11. 
It can be seen that the first and second peaks are approximately in agreement with the 
upwind and downwind directions, respectively, and valleys with the crosswind 
direction5. It is seen that the HH clutter is about 4-7dB lower than the VV clutter and 
the HV clutter is further about 5-10dB down regardless of azimuth angles. It is also 
seen by comparing Figure 11 (a) and Figure 11 (b) that the clutter decreases with the 
increase in incidence angle (decrease in grazing angle).  

                                                      
5 The azimuth angle of Ingara is defined as the angle the radar looks from. The upwind 
direction is the direction the wind blows from. Therefore the angle of the wind direction shown 
in Table 4 plus 180o would be the angle the radar looks to the upwind direction. 
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(a) run34683 with an incidence angle of 51.2o 
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(b) run34690 with an incidence angle of 67.2o 

Figure 11: Sea clutter as a function of azimuth angle for datasets of (a) run34683 and (b) 
run34690. The first and second peaks are approximately in agreement with the 
upwind and downwind directions, respectively, and the valleys with the crosswind 
direction.  

The estimated shape parameter ν  of the K distribution for these two runs is shown in 
Figure 12. It can be seen that the HH clutter is normally spikier than the VV clutter as 
the ν  parameter for the HH clutter is usually smaller. The ν  parameter for the HV 
clutter is in between indicating that the HV clutter is not as spiky as the HH clutter, but 
spikier than the VV clutter. It is also seen that the shape parameter does not show a 
clear azimuth pattern as the clutter amplitude, which means that although clutter tends 
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to be strongest in the upwind direction, it is not necessarily spikiest. It should be 
pointed out that the bigger fluctuation in ν  parameter for the VV data does not mean 
that the variation in VV clutter distribution with respect to the azimuth angle is more 
serious. In fact it is simply because the variation of a K distribution becomes less and 
less sensitive to large values of ν . This can be further verified by viewing Figure 13 
which shows the estimated b  parameter of the Weibull distribution for these two 
datasets. Fluctuations of the estimated b  parameter of the Weibull distribution with 
respect to azimuth angle for HH, VV and HV polarisations are all about the same. The 
estimated parameter b  falls in the range of 21 << b  for all datasets indicating that 
estimated Weibull distribution will converge a little faster than the estimated K 
distribution for all datasets. 
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(b) run34690 

Figure 12: The estimated parameter ν  of the K distribution for datasets run23683 and 
run34690. 
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(a) run34683 
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(b) run34690 

Figure 13: The estimated parameter b  of the Weibull distribution for datasets of run34683 and 
run34690. 

4.4 Discrepancies between Data and Fitted Distributions 
As discussed previously, the K or Weibull distribution is commonly found to be a good 
fit to sea clutter spatial distributions. Supposing that parameters of the clutter 
distribution are estimated for a given clutter environment, the performance of the 
target detection scheme under the clutter environment will then depend on the 
estimated parameters. Because the fitted distribution is not the true distribution of the 
dataset, we have to look at the disagreement between the two, especially in the tail 
region from the perspective of target detection. We need to estimate the possible errors 
between the two in order to have a good estimate of the radar performance. We 
calculated the discrepancy between the data cdf and the modelled cdf in the tail region 
to quantitatively determine the difference between the two. We found that the 
distribution of the sea clutter data collected by the Ingara system is not always in good 
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agreement with the fitted either K or Weibull distribution particularly for the HH data 
in the region beyond cdf > 0.999. Depending on the nature of the dataset, some can be 
well fitted by either the K or Weibull distribution and others cannot.  

Figure 14 and Figure 15 show two examples of the pdf fit. These two examples are 
purposely chosen in such a way that a good fit is observed in Figure 14 whereas a bad 
fit is seen in Figure 15. It can be seen in the good fit example that the fitted K 
distribution follows the data distribution beautifully even in the far tail region. On the 
other hand, in the bad fit example the data distribution suddenly departs from the 
fitted distribution in the far tail region.  
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(a) pdf abscissa  on linear scale to view global fit 
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(b) pdf abscissa  on log scale to view tail fit 
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(c) 1-cdf abscissa on log scale to view cdf convergence 

Figure 14: The K and Weibull distribution fits for the VV polarised data of run34683_rccal_225 
(an example of good fit). The Weibull fit is not as good as the K fit. 
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 (a) pdf abscissa on linear scale to view global fit 
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 (b) pdf abscissa on log scale to view tail fit 
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 (c) 1-cdf abscissa on log scale to view cdf convergence 

Figure 15: The K, Weibull and lognormal distribution fits for the HH polarised data of 
run34683_rccal_190 (an example of bad fit). None of the three models is in good 
agreement with the data distribution in the far tail region.  
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To quantitatively assess the agreement between the fitted distribution and the data 
distribution in the tail region, the difference (or separation) measured in dB between 
the fitted cdf and the actual cdf for the HH, VV and HV data at 1-cdf equal to 10-3 and 
10-5 was calculated and shown in Figure 16 to Figure 19. For instance, the amplitudes at 
the 1-cdf equal to 10-5 level are −9.75dB and −4.05dB for the fitted K distribution and 
the HH distribution, respectively, as shown in Figure 15 (c), the difference for this case 
is therefore, 7.5)05.4(75.9 −=−−− dB. Viewing these figures, we observe, 

• Overall the K distribution provides the best fit for the VV data. The error 
between the fitted K cdf and data cdf is less than −0.5dB at the 10-3 level and 
about −1.5dB at the 10-5 level for the VV data. 

• The biggest error between the fitted K cdf and data cdf at the 10-5 level can be 
up to −5 to −7dB for the HH data. This is attributed to the data distribution 
suddenly departing from the fitted distribution as seen in Figure 15.  

• The error for the HV data fit is in between, i.e., the error is not as small as that 
of the VV data, but not as big as that of the HH data either. 

• Among the three commonly used distributions (including the lognormal 
distribution6), the K distribution is the best fit, followed by the Weibull 
distribution for the data studied. It is found that the fitted Weibull distribution 
converges a little faster than the fitted K distribution which in turn converges a 
little faster than the data distribution. The overall fit of the lognormal 
distribution is not good and its convergence is usually too slow compared to 
that of the clutter data. 

In summary, we observe the sea clutter distribution can be fitted with the K 
distribution or Weibull distribution with a reasonable high accuracy at the level of 
1-cdf equal to 10-3 or lower. However, at the 10-4 level or higher, the pdf of some 
datasets deviates from the K- or Weibull distribution. The biggest difference between 
the fitted cdf and the data cdf is normally found for the HH data, due to its spikiest 
nature.  

The impact of clutter distribution fit errors is that any detection performance modelling 
or target detection algorithm that uses or assumes a particular distribution (e.g. K) in 
setting the detection threshold for a desired false alarm rate (typically around the 
10-5/10-6 level), will actually be setting the threshold too low and therefore result in a 
much higher number of false alarms than expected. 

                                                      
6 We omit details of the log-normal distribution, as it is the worst fit for the sea clutter studied. 
Interested readers may refer to Long (2001) for more details of the lognormal distribution. 
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We present better distribution models in the following Sections. 
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(b) K fit 

Figure 16: Difference in dB between the fitted cdf and the actual cdf at 1-cdf equal to 10-3 for 
datasets of run34683. 
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(b) K fit 

Figure 17: Difference in dB between the fitted cdf and the actual cdf at 1-cdf equal to 10-5 for 
datasets 34683. 
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(b) K fit 

Figure 18: Difference in dB between the fitted cdf and the actual cdf at 1-cdf equal to 10-3 for 
datasets of run34690.  
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(b) K fit 

Figure 19: Difference in dB between the fitted cdf and the actual cdf at 1-cdf equal to 10-5 for 
datasets of run34690.  

5. KA Distribution 
The phenomenon of the sudden departure of the sea clutter distribution from the K 
distribution in the tail region is believed to be attributed to sea spikes (Middleton, 1999, 
Watts et al, 2005). The finer the radar resolution, the more severe is the phenomenon. 
The understanding and modelling of such spikes are important for the prediction of 
radar performance and for guidance in developing improved target detection 
algorithms. Ward and Tough (2002), Watts et al (2005) use a KA distribution to 
improve the fit of the sea clutter distribution particularly in the tail region. The 
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character A simply means Class A (Middleton, 1999). In the KA distribution, the 
combination of Bragg and distributed whitecap scatterers is assumed to have a 
standard K distribution, and the discrete spikes (bursts and whitecaps confined in 
range extent) are assumed to be a Poisson distribution (Watts et al, 2005). In the 
presence of added noise, the overall distribution of amplitude x  is described using the 
compound formulation expressed as, 
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where t  is the local intensity of Bragg/whitecap scatterers which is gamma distributed 
as7, 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Γ

= −

bwbw

vtttp
σσ

ν
ν

ν
ν exp

)(
1)( 1  (35) 

The Poisson distribution is given by, 

!
)exp()(

n
NNnp

n

poisson −=   (36) 

where N  is the mean number of spikes in each range cell, and n  the number of spikes 
in a given range cell. The overall clutter distribution is the integral of 

∫=
∞

0
)()|()( dttptxpxp  (37) 

The noise, spikes and Bragg/whitecap scatterers are assumed to be mutually 
uncorrelated, so that, 

bwspn NxE σσσσ ++== }{ 2   (38) 

where σ , nσ , spσ  and bwσ  are the mean clutter intensity, mean noise intensity, mean 

spike intensity and mean Bragg/whitecap intensity, respectively. If 0== spn σσ , 

0=N  and letting π/4 2yt =  and noting 
σπ
vb 42 =  the above KA distribution given by 

                                                      
7 The local mean amplitude y  (with a scale factor) is used in (2). The relationship between y  
in (2) and t  in (35) is π/4 2yt = .  
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(34)-(37) simplifies to the standard K distribution given by (2)-(3) as discussed in 
Section 2. 

There are five parameters in a KA distribution, i.e., nσ , spσ , bwσ , N  and ν . Equation 

(38) defines one of their relationships, the noise intensity nσ  is measurable, and we 
would need another three equations in order to determine all five parameters. 
Normally the method of moments offers such a possibility. In general however, it is 
difficult to determine all the parameters using the moment method since higher order 
moments may be difficult to obtain. Even if the relationships can be determined using 
moment methods, the parameter values derived might not be the ones we are 
expecting. For instance, using the 4th moment, Ward and Tough (2002) derive a 
formula to determine the shape parameter bwν , for Bragg/whitecap scatterers, 
expressed as a function of the global shape parameter ν  and other parameters 
including spσ , bwσ , N . We found, however, this sometimes even results in negative 

values of bwν . Realising that the data distribution usually departs from the K 
distribution only in the region of 999.0>cdf , it is rational not to discriminate ν  and 

bwν , i.e., let vbw ≈ν  as assumed in (35). Therefore, the method of determining ν  
discussed in Section 2 remains unchanged. For a given radar system, its noise level nσ  

(or the clutter-to-noise ratio, nspbw NCNR σσσ /)( += ) can be determined. Finally, 

Watts et al (2005) and Ward and Tough (2002) suggest to set 01.0=N , and 
bwsp σσρ /=  in the range of 0 to 40 depending the strength of the spikes. 

Figure 20 shows a comparison between a K distribution and a KA distribution. 
Parameters used in this example are 5.3=ν , 1.0=σ , 0=nσ , 10=ρ  and 01.0=N . It 
can be seen in Figure 20 (b) that by adding the spike component, the KA distribution 
exhibits a sudden departure from the K distribution in the tail region, similar to the 
actual sea clutter distribution observed in the previous Section. It is therefore believed 
to be a better fit to sea clutter in the tail region for some situations. It is also noted from 
Figure 20 (a), however, that the KA distribution does not exactly agree with the K 
distribution in the low and mid regions. 

The cdf comparison between the KA and K distributions are shown in Figure 21. Two 
KA cdfs shown in the figure correspond to 5=ρ  and 10=ρ , respectively, and the 
other parameters remain the same as those used in Figure 20. This example 
demonstrates that the degree of the sudden departure from the K distribution can be 
modelled by choosing different spike parameters.  
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(a) pdf abscissa on linear scale to view global distribution 
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(b) pdf abscissa on log scale to view tail distribution 

Figure 20: Pdf omparison between KA and K distributions. Parameters used in the simulation 
are 5.3=ν , 1.0=σ , 0=nσ , 10=ρ  and 01.0=N .  
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Figure 21: Cdf comparison between the KA and K distributions. Two KA cdfs correspond to 
5=ρ  and 10=ρ , respectively, and the other parameters remain the same as those 

used in Figure 20.  

The fitted KA distribution for the HH polarised data of run34683_rccal_190 shown in 
Figure 15 is plotted in Figure 22 and Figure 23, together with the K distribution fit for 
comparison. It can be seen that the KA distribution significantly improves the fit in the 
tail region. 
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(a) pdf abscissa in linear scale to view global fit 
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(b) pdf abscissa on log scale to view tail fit 

Figure 22: The distribution of the sea clutter dataset shown in Figure 15 is re-fitted with the KA 
distribution. Parameters used in the KA distribution are 0=nσ , 10=ρ  and 

01.0=N . The previous K distribution fit is also shown for comparison. 
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Figure 23: Cdf comparison between the data distribution and the fitted KA distribution. The cdf 
of the previously fitted K distribution is also shown for comparison. 

Figure 16 and Figure 17 have demonstrated that the goodness of the classical K fit to 
sea clutter distribution varies, although the HH data generally contain more spikes 
than the other two polarised data. It therefore can be concluded that in general there 
are no universal parameters ( N  and ρ ) of the spike component for the KA 
distribution. There is also no systematic way to estimate N  and ρ  parameters, and the 
estimation involves a ‘try and see’ process. 

Apart from the problem that not all parameters of a KA distribution can be determined 
solely from a given dataset, the other problem of the KA distribution is that the 
distribution cannot be expressed in closed form. Therefore, the pdf and cdf of a KA 
distribution can only be numerically computed using (34)-(37). 

6. KK Distribution 

6.1 KK distribution 
The KA distribution significantly improves the agreement of the fitted distribution and 
the sea clutter distribution in the tail region, if the spike component exists. It may also 
physically explain why the distribution of spiky sea clutter departs from the classical K 
distribution in the tail region. Its main drawback however is that the distribution 
cannot be expressed in closed form, and its pdf and cdf have to be numerically 
computed, which is computationally expensive. It therefore significantly increases the 
difficulty for the analysis of radar performance and for the derivation of the threshold 
multiplier usually required by the target detection process, such as CFAR algorithms. 
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In this Section we introduce a KK distribution for sea clutter distribution fit if the spike 
component exists. The KK distribution assumes that both the Bragg/whitecap 
scatterers and spikes are K-distributed, and the overall clutter distribution is the 
mixture of the two K distributions, as, 

),;(),;()1()( 21 spspxpkxpkxp σνσν +−=   (39) 

where 1p  and 2p  are K-distributed functions with the specified shape parameter and 
the mean intensity (note, 2/4 cνσ =  as given in Table 1) in the brackets. If 0=k , 

),;()( 1 σνxpxp =  and it simplifies to the usual K distribution without the spike 
component. Since the sea clutter distribution usually departs from the K distribution at 
1-cdf equal to about 10-3 or higher, it is rational to assume the shape parameter and the 
mean intensity of Bragg/whitecap scatterers in ),;(1 σνxp  are the same as the K 
parameters discussed in Section 2. The selection of k , spν  and σσρ /sp=  together 
determines the spike component8. It is found empirically that the shape parameter of 

),;(2 spspxp σν  can be set to the same value of ),;(1 σνxp , i.e., νν =sp . The selection of 
ρ  mainly determines the degree of the separation between two distributions in the tail 
region while the selection of k  affects both the departure level and the degree of the 
separation. 

Figure 24 compares the K, KA and KK distributions for the example shown in Figure 
20. The selection of the parameters for the KK distribution is νν =sp , 7/ == σσρ sp  
and 01.0=k . It can be seen from Figure 24 (b) that the KK distribution is nearly 
identical to the KA distribution in the tail region. On the other hand, as shown in 
Figure 24 (a), the global discrepancies between the KK and K distributions are 
unnoticeable, whereas the existence of the global discrepancies between the KA and K 
distributions is obvious. 

                                                      
8 In the KA distribution bwsp σσρ /=  differs from the definition in the KK distribution. 
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(a) pdf abscissa on linear scale to view global distribution 
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(b) pdf abscissa on log scale to view tail distribution 

Figure 24: Comparison between K, KA and KK distributions. Parameters for the K and KA 
distributions are the same as those used in Figure 20. Parameters for the KK 
distribution are νν =sp , 7/ == σσρ sp  and 01.0=k . The K and KK 
distributions totally appear coincident in plot (a).  

The cdf comparison between these three distributions is shown in Figure 25. It can be 
seen that the cdfs of the KK and KA distributions are very close in the tail region. 
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Figure 25: Cdfs of the K, KA and KK distributions for the example shown in Figure 24. The cdfs 
of the KA and KK distributions are very close in the tail region. 

The influence of the parameters k  and ρ  over the KK distribution in the tail region is 
demonstrated in Figure 26. It can be seen that the parameter ρ  mainly influences the 
degree of the separation between the K and KK distributions while the parameter k  
affects both the departure level and the separation. 
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Figure 26: KK distribution with different spike parameters. It is shown that the parameter ρ  
mainly influences the degree of the separation between the K and KK distributions 
while the parameter k  affects both the departure level and the separation. 
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The data fit shown in Figure 22 and Figure 23 is replotted and shown in Figure 27 and 
Figure 28. The KK fit is plotted together with the KA and K fits for comparison. It is 
seen that the fit of the proposed KK distribution is better than the KA distribution not 
only in the tail region (refer to Figure 27 (b) and Figure 28) but also in other regions 
(refer to Figure 27 (a)) for the parameters used. 
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(a) pdf abscissa in linear scale to view global fit 
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(b) pdf abscissa on log scale to view tail fit 

Figure 27: The distribution of the sea clutter dataset shown in Figure 22 is replotted. The KK fit 
is also shown. The KK parameters used are  005.0=k  and 8=ρ . 
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Figure 28: Cdf comparison between the data distribution and the fitted KA and KK 
distributions. The cdf of the fitted K distribution is also shown for comparison. 

6.2 Discrepancies between Data and Fitted KK Distributions 
It has been shown in Section 4 that in the region beyond cdf > 0.999, some datasets can 
be fitted well by either K or Weibull distributions, and others cannot. In this 
Subsection, we use the KK distribution to improve the fit for the tail region. To 
simplify the algorithm, we first tabulate the cdf separation, between the K and KK 
distributions, as a function of ρ  with the fixed values of 01.0=k  and 75.4=ν  
( 75.4=ν  is the median value for datasets of run34690 and run34683), which is shown 
in Figure 29. Obviously if we use the true value of ν  to create the lookup table for each 
dataset, the results might be better but at a higher cost of computation. 
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Figure 29: Cdf separations between the K and KK distributions as a function of ρ  at the levels 

of 1-cdf equal to 10-3, 10-4 and 10-5, respectively. The selection of other two 
parameters is 01.0=k , and 75.4=ν . 
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Using the lookup table as shown in Figure 29, our KK fit process involves the following 
steps: 

1. Find the shape parameter and scale parameter for the K distribution; 

2. Compute the 1-cdf differences between the fitted K and data distributions at 
10-3, 10-4 and 10-5; 

3. Find ρ  values corresponding to the computed 1-cdf differences from the 
lookup table of Figure 29; 

4. Use the mean of ρ  and 01.0=k  as the final values for the KK fit.  

Discrepancies of the KK fit for datasets of run34683 and run34690 at 1-cdf equal to 10-3 
and 10-5 are shown in Figure 30 and Figure 31, respectively. It can be seen that the KK 
distribution significantly improves the fit in the tail region. Compared to Figure 17 and 
Figure 19, where the typical cdf difference between the K and data distributions was 
around −4 to −5dB at the 10-5 level for the HH data, this difference now reduces to 
around ±1dB. 
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(b) run34690 

Figure 30: Difference in dB between the fitted KK cdf and the actual cdf at the 10-3 level for 
datasets run34683 and run34690. 
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(a) run34683 
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(b) run34690 

Figure 31: Difference in dB between the fitted KK cdf and the actual cdf at the 10-5 level for 
datasets run34683 and run34690. 

Values of the parameter ρ  used for the KK fit are shown in Figure 32. It is seen that 
the distribution of the VV data can almost be fitted with the K distribution (when 1=ρ  
the KK distribution simplifies to the K distribution). The HH data is spikiest, and the 
typical values of ρ  are about 4 for run34683 and 7 for run34690. We also see that 
overall the fit for the datasets of run34683 is better than that of for the datasets of 
run34690. Whether this is due to the incidence angle is unclear at this stage. 
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(a) run34683 
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(b) run34690 

Figure 32: The value of ρ  used in the KK fit. The parameter 01.0=k  is fixed for all datasets. 
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7. Weibull-Weibull Distribution 

7.1 WW Distribution 
The fact that the Weibull distribution is very similar to the K distribution naturally 
leads to considering using a Weibull-Weibull (WW) distribution to fit sea clutter with 
spikes. Similar to the KK distribution, the WW distribution can be defined as, 

 ),;(),;()1()( 21 spspbxpkbxpkxp σσ +−=  (40) 

where ),;(1 σbxp  and ),;(2 spspbxp σ represent the distribution of Bragg/whitecap 
scatterers and spikes, respectively. Similar to the explanations given for the KK 
distribution, the parameters b  and σ  of ),;(1 σbxp  can be considered to be equal to 
the global b  and σ  of the data. As given in Table 2, the mean intensity σ  is a function 
of b  and c , as, bcb /2/)/21( +Γ=σ . The shape parameter spb  for the spike component 

can be assumed to be equal to the global shape parameter, i.e., bbsp = . The free 

parameters, k  and σσρ /sp=  determine the component of spikes. If 0=k  or 1=ρ , 
the WW distribution simplifies to the Weibull distribution. 

The HH data of run24683_rccal_190, discussed before, is fitted using the WW 
distribution with 01.0=k  and 9=ρ , and the results are shown in Figure 33 and 
Figure 34. The previous K and KA results are also shown for comparison. It is seen that 
in the tail region the WW distribution is nearly identical to the KA distribution. The 
global agreement between the data distribution and the WW distribution, as shown in 
Figure 33 (a), however is not as good as that of the K distribution, which can also be 
observed from Figure 15 (a). 
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(a) pdf on linear scale to view global fit 
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(b) pdf on log scale to view tail fit 

Figure 33: The WW fit to the distribution of sea clutter with spikes. The K and KA fits are also 
shown for comparisons. The WW parameters used are 01.0=k  and 9=ρ . 
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Figure 34: Cdf comparison between the data, K, KA and WW distributions. 

7.2 Discrepancies between Data and Fitted WW Distributions 
The similar method for determining the KK parameters is used for the determination 
of the WW parameters. We first tabularise the cdf separation as a function of ρ  for the 
given parameters of 01.0=k  and 8.1=b  (the median value of the datasets) at the 
levels of 1-cdf equal to 10-3, 10-4 and 10-5, respectively, as shown in Figure 35.  
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Figure 35: The cdf separations between the Weibull and WW distributions as a function of ρ  

at the levels of 1-cdf equal to 10-3, 10-4 and 10-5, respectively, with the given 
parameters 01.0=k  and 8.1=b . 
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The WW fit process involves the following steps. 

1. Find the shape and scale parameters for the Weibull distribution; 

2. Compute the cdf differences between the data and the fitted Weibull 
distributions at 1-cdf equal to 10-3, 10-4 and 10-5; 

3. Find ρ  values corresponding to the cdf differences from the lookup table of 
Figure 35; 

4. Use the mean of ρ  and 01.0=k  as the final parameters for the WW fit.  

Discrepancies between the WW fit and datasets for run34683 and run34690 at 1-cdf 
equal to 10-3 and 10-5 are shown in Figure 36 and Figure 38. Compared to the results of 
the Weibull fit shown in Figure 17 and Figure 18, it can be seen that the WW fit 
significantly improves the fit in the tail region. For instance, the cdf separation for the 
run34690 HH data at the 10-5 level is about −7dB if Weibull fit is used, this figure is 
reduced to and confined in about ±1dB should the WW fit be applied. Overall the fit of 
the WW distribution in the tail region is almost as good as that of the KK distribution.  
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(b) run34690 

Figure 36: Difference in dB between the fitted WW cdf and the actual cdf at the 1-cdf equal to 
10-3 for datasets run34683 and run34690. 
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(b) run34690 

Figure 37: Difference in dB between the fitted WW cdf and the actual cdf at 1-cdf equal to 10-5  
for datasets run34683 and run34690. 

Figure 38 shows the parameter ρ  used in the WW fit process. Since the Weibull 
distribution normally converges a little faster than the K distribution, the ρ  values are 
generally bigger than the values used in the KK fit to slow down the convergence. For 
the VV data, the ρ  values for the KK fit are around 1, indicating the traditional K 
distribution is a good fit. In the case of the WW fit for the VV data, however, the ρ  
values are around 2, indicating the traditional Weibull distribution is conservative and 
needs to be compensated by choosing 1>ρ  in order to fit the data distribution in the 
tail region. Since the WW distribution can alter its convergence by choosing different 
ρ  values, it is therefore possible to tune its convergence to be as good as that of the KK 
distribution.  
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 (b) run34690 

Figure 38: The value of ρ  used in the WW fit. The parameter 01.0=k  is fixed for all datasets. 

8. Conclusions 

Distribution of X-band, high range resolution (0.75m) and high incidence angle (50o 
and 70o) sea clutter data, collected by the DSTO developed airborne radar system, 
Ingara, in the Sea Clutter Trial 2004, has been studied. Each dataset used in the analysis 
consists of about 106 samples, corresponding to a span of 3.5o to 8o in incidence angle 
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change (depending on nominal incidence angle), and a span of 5o in azimuth angle 
change. Since the incidence angle is in the plateau region (Long, 2001) and the span of 
the azimuth angle is narrow, we can consider the distribution studied to be the same as 
the spatial distribution. The size of the samples provides a reliable distribution up to 
1-cdf equal to the 10-5 level. 

The mean clutter varies periodically in azimuth with the maxima and the minima in 
the upwind and crosswind directions, respectively, and the second peak corresponding 
to the downwind direction. The shape parameter of clutter distributions, however, 
does not show a noticeable azimuthal pattern correlated with wave/wind directions.  

It has been found that the VV data has the lowest spiky level compared to the HH and 
HV data. In general the VV data can be fitted by a K distribution with the shape 
parameter varying from about 4 to 25.  

The HH data is spikiest and its distribution exhibits a sudden departure from the K 
distribution in the tail region, often in the region of 1-cdf equal to 10-3 and beyond due 
to discrete sea spikes. To tackle this problem, the KA, KK and WW distributions (the 
latter two have been first proposed in this report) have been used to improve the 
agreement between the data and fitted distributions in the tail region. It has been 
shown that the difference, which can be as large as about −7dB between the data cdf 
and the K cdf at the 1-cdf equal to 10-5 level, can be reduced to about ±1dB if the KK 
distribution is used to model the data distribution. 

The KA distribution cannot be expressed in closed form, and it is computationally very 
expensive. It also imposes a difficulty to the analysis of radar performance, as the 
analysis often involves the clutter distribution function. Aimed at simplifying the 
distribution function, this report has proposed a KK distribution, which is a mixture of 
two K distributions of which one representing the distribution of Bragg/whitecap 
scatterers and the other for the distribution of sea spikes. We have shown that the KK 
distribution is as good as the KA distribution in terms of agreement in the tail region. 
In addition, the KK distribution introduces the least distortion to the K distribution in 
the low and mid regions. Mathematically, a KK distribution is simply a mixture of two 
K distributions. 

Since the Weibull distribution is very close to the K distribution, this report has also 
proposed a WW distribution to improve the agreement between the data pdf and the 
fitted pdf in the tail region. A WW distribution is a sum of two Weibull distributions. 
In general, a Weibull distribution converges a little faster than a K distribution for 
shape parameters normally found in sea clutter statistics, which often leads to a bigger 
discrepancy between the data pdf and the Weibull pdf in the tail region. The Weibull 
fit, even for the VV data is not as good as the K fit. This however can be compensated if 
a WW distribution is used, as the convergence of the WW distribution is tuneable. The 
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results show that the fit of the WW distribution in the tail region is comparable to the 
KK or KA distribution. However, in the low and mid region, the agreement between 
the data pdf and the WW pdf is not as good as that between the data pdf and KK pdf. 

The report has also proven that a Weibull distribution can be transformed to a 
Rayleigh or gamma distribution and vice versa through a non-linear but simple 
mapping. Therefore, in the case where clutter data is modelled as a Weibull 
distribution, the data may be first transformed accordingly and then treated as a 
Rayleigh or gamma distribution, as the Rayleigh or gamma distribution is much easier 
to deal with. For simulation, a Weibull distributed dataset can be easily generated from 
a transform of a Rayleigh distributed dataset.  

CFAR schemes often employ local statistics of clutter to adaptively set the threshold for 
target detection. This report has also discussed the distribution of the sum of K or 
Weibull distributed samples. An approximate formula in closed form approaching the 
distribution of the sum of Weibull distributed samples has been proposed. Its accuracy 
has been numerically verified using both the convolution method and simulated data. 
No noticeable error between the proposed formula and the numerically evaluated 
values from the convolution method or simulated data has been found. 

This report contributes to the delivery of Milestone 4.1.1.1.1: High grazing angle sea 
clutter and target signatures in the AIR 7000 S&T Plan (Annex C – Technical Support 
Plan). The outcomes of the analysis contained herein will also form a component of the 
model delivered for Milestone 4.1.1.1.2: Radar modelling capability development – maritime 
of the Technical Support Plan. These activities are aimed at better understanding of the 
radar performance drivers for operation of High Altitude Long Endurance (HALE) 
UAVs in the maritime surveillance role, and therefore reducing risk in any acquisition 
decision. 
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Appendix A:  

Table A-1: Mean and shape parameters estimated for run34683 (incidence angle of 51.3o). 
Mean amplitude in dB K shape parameter ν  Weibull shape parameter b  Azimuth 

angle (o) HH VV HV HH VV HV HH VV HV 
0 -26.84 -21.31 -35.11 5.635 9.861 7.081 1.861 1.919 1.889 
5 -26.85 -20.98 -35.25 5.379 10.988 6.937 1.855 1.927 1.886 

10 -26.44 -20.38 -35.08 3.986 10.566 6.258 1.807 1.925 1.875 
15 -25.99 -19.74 -34.80 3.985 12.966 5.766 1.807 1.938 1.864 
20 -25.87 -19.28 -34.62 5.319 17.564 7.949 1.853 1.954 1.900 
25 -25.56 -18.95 -34.48 5.349 12.590 6.324 1.854 1.936 1.876 
30 -25.18 -18.61 -34.13 3.494 6.098 4.312 1.782 1.871 1.821 
35 -24.96 -18.29 -34.13 3.185 5.498 4.211 1.762 1.858 1.817 
40 -24.61 -18.05 -33.97 3.328 8.210 4.853 1.772 1.904 1.840 
45 -24.69 -18.07 -34.35 3.331 6.994 4.788 1.772 1.887 1.838 
50 -24.45 -17.94 -34.25 2.742 4.755 4.520 1.727 1.837 1.829 
55 -24.03 -17.65 -33.97 2.475 3.932 3.831 1.701 1.805 1.800 
60 -23.92 -17.56 -34.00 2.772 4.684 4.185 1.730 1.834 1.816 
65 -23.99 -17.69 -33.97 3.063 6.660 5.132 1.754 1.882 1.848 
70 -24.15 -17.82 -34.09 2.978 8.311 5.955 1.747 1.905 1.868 
75 -24.05 -17.71 -33.93 2.791 5.764 4.491 1.732 1.864 1.828 
80 -23.92 -17.55 -33.96 3.090 4.210 3.806 1.756 1.817 1.799 
85 -24.12 -17.68 -34.11 3.327 4.234 3.966 1.772 1.818 1.806 
90 -24.16 -17.84 -34.12 3.463 6.083 4.658 1.780 1.871 1.834 
95 -24.05 -17.88 -34.04 3.013 8.166 4.056 1.750 1.903 1.810 
100 -24.16 -17.91 -33.80 3.532 6.292 3.971 1.784 1.875 1.807 
105 -24.40 -17.96 -33.98 4.842 6.616 5.057 1.840 1.881 1.846 
110 -24.60 -18.25 -34.15 4.444 7.629 5.735 1.826 1.896 1.864 
115 -24.53 -18.37 -33.98 4.211 10.744 5.445 1.817 1.926 1.857 
120 -24.64 -18.48 -33.84 4.824 11.424 5.250 1.839 1.930 1.852 
125 -25.00 -18.84 -34.20 5.338 13.029 7.385 1.854 1.939 1.893 
130 -25.38 -19.37 -34.40 6.565 15.548 7.717 1.880 1.948 1.898 
135 -25.59 -19.77 -34.35 6.876 18.028 6.586 1.885 1.955 1.881 
140 -25.92 -20.45 -34.66 5.883 15.868 5.695 1.867 1.949 1.863 
145 -26.55 -21.29 -35.27 5.707 11.171 5.599 1.863 1.929 1.860 
150 -26.57 -21.80 -35.35 4.664 10.638 5.300 1.834 1.925 1.853 
155 -26.09 -21.59 -34.84 4.484 12.743 4.961 1.827 1.937 1.843 
160 -25.39 -21.38 -34.16 4.313 11.094 5.286 1.821 1.928 1.852 
165 -25.71 -21.78 -34.59 4.835 10.059 6.716 1.839 1.921 1.883 
170 -25.25 -21.57 -34.41 4.758 11.059 5.777 1.837 1.928 1.865 
175 -25.51 -21.42 -34.41 4.862 7.930 5.302 1.840 1.900 1.853 
180 -25.22 -21.06 -34.57 4.098 6.743 3.762 1.812 1.883 1.796 
185 -24.74 -20.52 -34.46 3.921 6.713 4.033 1.804 1.883 1.809 
190 -24.04 -19.71 -34.00 4.684 8.556 4.690 1.834 1.907 1.835 
195 -23.34 -18.83 -33.42 5.853 11.080 4.594 1.866 1.928 1.831 
200 -22.74 -18.16 -33.21 5.422 9.276 4.994 1.856 1.914 1.844 
205 -22.37 -17.69 -33.08 5.106 7.288 4.808 1.848 1.892 1.839 
210 -21.84 -17.25 -32.97 5.417 9.285 5.606 1.856 1.914 1.861 
215 -21.45 -16.84 -32.73 5.567 9.821 7.137 1.860 1.919 1.889 
220 -21.00 -16.41 -32.62 5.315 9.775 6.654 1.853 1.919 1.882 
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Mean amplitude in dB K shape parameter ν  Weibull shape parameter b  Azimuth 

angle (o) HH VV HV HH VV HV HH VV HV 
225 -20.56 -15.96 -32.55 4.158 9.629 5.800 1.815 1.917 1.865 
230 -20.47 -15.88 -32.73 3.953 9.137 6.164 1.806 1.913 1.873 
235 -20.58 -16.03 -32.98 4.888 12.974 6.598 1.841 1.938 1.881 
240 -20.59 -16.09 -33.14 5.631 10.819 6.233 1.861 1.926 1.874 
245 -20.52 -15.99 -33.14 5.601 9.958 6.654 1.860 1.920 1.882 
250 -20.27 -15.86 -33.01 5.762 10.079 8.299 1.864 1.921 1.905 
255 -20.02 -15.71 -32.95 5.017 11.752 9.218 1.845 1.932 1.914 
260 -20.07 -15.72 -32.88 4.930 14.392 9.070 1.842 1.944 1.912 
265 -20.21 -15.88 -32.94 4.620 12.684 7.058 1.832 1.937 1.888 
270 -20.41 -16.06 -32.74 5.542 14.756 6.738 1.859 1.946 1.883 
275 -20.56 -16.30 -32.75 5.428 12.174 7.266 1.856 1.934 1.891 
280 -21.10 -17.48 -33.36 6.677 9.286 6.791 1.882 1.914 1.884 
285 -21.30 -17.84 -33.43 5.978 11.600 8.775 1.869 1.931 1.910 
290 -21.71 -18.13 -33.86 5.000 13.261 7.692 1.844 1.940 1.897 
295 -22.07 -18.40 -33.91 4.904 10.490 5.789 1.842 1.924 1.865 
300 -22.15 -18.51 -33.48 4.743 9.808 6.644 1.836 1.919 1.882 
305 -22.43 -18.10 -32.92 5.297 11.041 5.712 1.853 1.928 1.863 
310 -23.09 -18.74 -33.43 5.101 12.294 8.459 1.847 1.935 1.906 
315 -23.69 -19.53 -33.89 4.414 12.011 8.475 1.825 1.933 1.906 
320 -24.30 -20.36 -34.66 3.841 10.225 5.922 1.800 1.922 1.868 
325 -24.52 -20.63 -34.45 4.056 10.727 5.564 1.810 1.926 1.860 
330 -24.79 -20.74 -34.14 4.058 9.344 6.399 1.810 1.915 1.877 
335 -25.86 -21.40 -34.83 3.688 8.569 4.570 1.793 1.907 1.831 
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Table A-2: Mean and shape parameters estimated for run34690 (incidence angle of 67.2o). 
Mean amplitude in dB K shape parameter ν  Weibull shape parameter b  Azimuth 

angle (o) HH VV HV HH VV HV HH VV HV 
0 -33.39 -26.18 -38.64 3.243 16.276 6.836 1.766 1.951 1.885 
5 -33.43 -25.68 -38.56 3.200 15.524 7.925 1.763 1.948 1.900 

10 -33.27 -25.07 -38.27 3.242 11.035 7.112 1.766 1.928 1.889 
15 -33.56 -24.82 -38.49 3.664 7.014 6.029 1.791 1.888 1.870 
20 -33.39 -24.24 -38.20 3.630 7.613 7.187 1.790 1.896 1.890 
25 -33.27 -23.56 -38.20 4.052 10.415 9.818 1.810 1.924 1.919 
30 -32.84 -22.97 -37.86 3.375 13.492 8.284 1.775 1.941 1.904 
35 -32.51 -22.66 -37.65 3.154 12.197 8.747 1.760 1.935 1.909 
40 -32.54 -22.42 -37.72 3.362 11.330 9.295 1.774 1.930 1.915 
45 -32.43 -22.10 -37.59 3.137 8.315 7.261 1.759 1.905 1.891 
50 -32.15 -21.91 -37.59 3.132 7.814 6.800 1.759 1.899 1.884 
55 -32.25 -21.84 -37.65 3.314 11.174 8.602 1.771 1.929 1.908 
60 -32.29 -21.97 -37.79 3.374 13.587 10.694 1.775 1.941 1.925 
65 -32.36 -21.99 -37.86 4.002 13.627 10.114 1.808 1.941 1.921 
70 -32.22 -21.89 -37.65 3.695 15.299 11.039 1.793 1.948 1.928 
75 -32.11 -21.84 -37.59 3.618 17.817 10.153 1.789 1.955 1.922 
80 -32.04 -21.80 -37.52 3.567 17.362 9.582 1.786 1.954 1.917 
85 -31.94 -21.87 -37.46 3.602 13.765 10.980 1.788 1.942 1.927 
90 -31.67 -21.72 -37.27 3.271 9.885 8.300 1.768 1.920 1.905 
95 -31.57 -21.79 -37.52 3.387 12.347 7.692 1.776 1.935 1.897 
100 -31.67 -22.57 -37.99 3.747 15.686 9.171 1.796 1.949 1.913 
105 -31.73 -22.64 -38.20 3.380 12.421 7.812 1.775 1.936 1.899 
110 -31.18 -22.55 -37.79 2.825 13.793 6.335 1.735 1.942 1.876 
115 -31.63 -22.71 -38.06 3.647 17.247 8.415 1.790 1.953 1.906 
120 -31.90 -23.10 -38.42 3.420 17.787 8.047 1.778 1.955 1.902 
125 -32.11 -23.41 -38.49 3.396 16.050 9.410 1.776 1.950 1.916 
130 -32.40 -23.82 -38.94 3.556 13.412 6.537 1.785 1.940 1.880 
135 -33.03 -24.72 -39.58 3.691 18.367 7.082 1.793 1.956 1.889 
140 -33.00 -25.34 -39.91 3.176 18.192 7.398 1.762 1.956 1.893 
145 -32.32 -25.43 -39.25 2.983 20.221 7.197 1.748 1.960 1.890 
150 -32.69 -26.30 -40.00 2.827 13.951 6.567 1.735 1.943 1.880 
155 -32.58 -26.88 -40.09 2.515 10.589 7.742 1.705 1.925 1.898 
160 -31.60 -25.95 -39.66 2.514 12.145 7.091 1.705 1.934 1.889 
165 -31.28 -25.83 -40.00 2.512 12.211 7.128 1.705 1.935 1.889 
170 -31.67 -26.11 -40.63 2.594 10.686 11.747 1.713 1.925 1.932 
175 -31.09 -25.19 -40.00 2.304 8.295 6.927 1.681 1.905 1.886 
180 -30.31 -24.21 -39.02 2.617 12.296 10.111 1.715 1.935 1.921 
185 -29.66 -23.70 -39.41 2.294 10.326 8.695 1.680 1.923 1.909 
195 -29.90 -22.52 -37.59 2.509 9.972 8.384 1.704 1.920 1.906 
200 -29.53 -22.09 -37.46 2.285 10.683 8.413 1.679 1.925 1.906 
205 -29.04 -21.64 -36.71 2.462 12.939 11.092 1.699 1.938 1.928 
210 -28.78 -21.11 -36.95 2.425 16.053 10.231 1.695 1.950 1.922 
215 -28.38 -20.85 -36.77 2.280 17.587 10.520 1.678 1.954 1.924 
220 -28.38 -20.77 -36.89 2.525 14.453 10.684 1.706 1.945 1.925 
225 -28.13 -20.52 -36.54 2.261 16.969 14.647 1.676 1.953 1.945 
230 -28.05 -20.35 -36.89 2.448 17.563 10.799 1.698 1.954 1.926 
235 -27.87 -20.26 -36.59 2.392 15.884 12.980 1.691 1.949 1.938 
240 -27.94 -20.27 -36.71 2.445 12.552 12.832 1.697 1.936 1.938 
245 -28.13 -20.31 -37.02 2.928 14.184 16.430 1.743 1.944 1.951 
250 -28.09 -20.29 -36.89 2.529 12.559 12.800 1.707 1.936 1.938 
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Mean amplitude in dB K shape parameter ν  Weibull shape parameter b  Azimuth 

angle (o) HH VV HV HH VV HV HH VV HV 
255 -28.20 -20.26 -36.89 2.863 13.059 12.374 1.738 1.939 1.935 
260 -28.34 -20.34 -36.95 2.667 11.552 13.498 1.720 1.931 1.941 
265 -28.40 -20.75 -37.33 2.939 10.825 11.587 1.744 1.926 1.931 
270 -28.07 -21.13 -37.52 2.661 12.918 11.317 1.720 1.938 1.930 
275 -28.22 -21.17 -37.39 2.870 15.191 14.879 1.738 1.947 1.946 
280 -28.38 -21.26 -37.33 3.128 16.232 12.645 1.758 1.951 1.937 
285 -28.43 -21.31 -37.39 3.030 19.647 17.873 1.751 1.959 1.955 
290 -28.52 -21.36 -37.39 2.927 25.950 16.400 1.743 1.969 1.951 
295 -28.68 -21.44 -37.33 3.010 24.836 13.452 1.750 1.968 1.941 
300 -28.85 -21.67 -37.27 2.743 20.964 11.829 1.727 1.962 1.932 
305 -29.32 -22.06 -37.39 2.936 12.352 11.842 1.744 1.935 1.933 
310 -30.09 -22.53 -37.92 3.173 10.014 15.418 1.762 1.921 1.948 
315 -30.75 -23.09 -38.20 3.288 12.394 14.242 1.769 1.936 1.944 
320 -30.72 -23.45 -37.99 2.885 13.399 11.731 1.740 1.940 1.932 
325 -30.78 -23.64 -37.72 3.219 10.464 10.225 1.765 1.924 1.922 
330 -31.47 -24.34 -38.27 2.910 8.028 9.906 1.742 1.901 1.920 
335 -32.15 -25.53 -39.02 2.803 9.474 8.833 1.733 1.916 1.910 
340 -31.87 -25.78 -38.71 2.635 8.521 8.161 1.717 1.907 1.903 
345 -31.70 -25.61 -37.92 2.511 6.310 5.232 1.705 1.876 1.851 
350 -32.40 -25.93 -38.13 2.574 8.883 6.497 1.711 1.911 1.879 
355 -32.92 -26.16 -38.42 2.871 13.504 6.955 1.739 1.941 1.887 
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Table A-3: Estimated KK and WW parameters for run34683 (incidence angle of 51.3o). 
KK parameters WW parameters Azimuth 

angle (o) k  ρ  (HH) ρ  (VV) ρ  (HV) k  ρ  (HH) ρ  (VV) ρ  (HV) 
0 0.01 3.38 1.20 3.71 0.01 4.06 2.59 4.22 
5 0.01 3.28 1.00 3.25 0.01 4.03 2.16 3.89 

10 0.01 4.13 1.04 3.71 0.01 4.97 2.29 4.29 
15 0.01 4.76 1.00 5.30 0.01 5.69 2.13 5.93 
20 0.01 4.65 1.00 4.52 0.01 5.40 1.91 4.92 
25 0.01 4.04 1.00 3.94 0.01 4.71 2.12 4.47 
30 0.01 4.14 1.00 3.40 0.01 5.01 2.55 4.30 
35 0.01 3.55 1.00 3.44 0.01 4.68 2.54 4.45 
40 0.01 3.70 1.00 3.63 0.01 4.72 2.39 4.46 
45 0.01 3.51 1.66 3.18 0.01 4.54 2.96 4.06 
50 0.01 3.55 2.17 3.84 0.01 4.59 3.37 4.57 
55 0.01 4.42 2.74 4.97 0.01 5.55 3.83 5.88 
60 0.01 3.70 2.35 4.17 0.01 4.81 3.52 5.04 
65 0.01 2.37 1.00 3.04 0.01 3.74 2.55 3.90 
70 0.01 3.05 1.00 3.76 0.01 4.19 2.60 4.49 
75 0.01 3.67 1.97 4.01 0.01 4.81 3.21 4.76 
80 0.01 4.02 1.00 3.02 0.01 5.30 2.88 4.04 
85 0.01 2.45 1.00 3.03 0.01 3.77 2.71 4.05 
90 0.01 2.69 1.00 3.21 0.01 3.89 2.50 4.12 
95 0.01 4.97 1.74 5.93 0.01 6.11 2.89 6.88 
100 0.01 3.25 2.09 3.50 0.01 4.21 3.12 4.38 
105 0.01 3.02 1.00 3.16 0.01 3.89 2.76 3.99 
110 0.01 3.91 1.00 3.39 0.01 4.73 2.70 4.12 
115 0.01 3.35 1.16 3.37 0.01 4.35 2.43 4.22 
120 0.01 2.75 1.00 2.82 0.01 3.79 2.18 3.71 
125 0.01 3.33 1.34 3.81 0.01 4.10 2.46 4.28 
130 0.01 3.60 1.00 4.31 0.01 4.30 2.10 4.78 
135 0.01 2.59 1.00 2.47 0.01 3.44 1.84 3.40 
140 0.01 4.51 1.00 2.56 0.01 5.16 2.04 3.56 
145 0.01 4.02 1.00 2.78 0.01 4.83 2.17 3.69 
150 0.01 4.03 1.65 3.82 0.01 4.85 2.69 4.48 
155 0.01 4.44 1.38 4.48 0.01 5.20 2.45 5.23 
160 0.01 4.16 1.70 3.11 0.01 4.95 2.57 3.92 
165 0.01 2.78 1.00 2.64 0.01 3.70 2.27 3.47 
170 0.01 3.96 1.42 3.17 0.01 4.68 2.58 3.92 
175 0.01 3.99 1.50 3.21 0.01 4.73 2.82 4.03 
180 0.01 3.50 1.07 3.05 0.01 4.39 2.84 4.06 
185 0.01 3.96 1.26 2.95 0.01 4.88 2.87 3.96 
190 0.01 5.77 2.69 2.07 0.01 6.88 3.50 3.43 
195 0.01 3.28 1.31 1.86 0.01 4.01 2.39 3.31 
200 0.01 3.57 1.00 1.52 0.01 4.33 2.37 3.14 
205 0.01 3.00 1.00 1.75 0.01 3.97 2.61 3.22 
210 0.01 2.88 1.16 1.84 0.01 3.79 2.53 3.13 
215 0.01 4.69 1.46 1.07 0.01 5.60 2.55 2.69 
220 0.01 3.15 1.00 1.00 0.01 4.13 2.24 2.68 
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KK parameters WW parameters Azimuth 
angle (o) k  ρ  (HH) ρ  (VV) ρ  (HV) k  ρ  (HH) ρ  (VV) ρ  (HV) 

225 0.01 3.27 1.00 1.60 0.01 4.22 2.39 3.05 
230 0.01 2.87 1.00 2.00 0.01 3.90 2.34 3.15 
235 0.01 3.18 1.00 3.29 0.01 4.10 2.21 4.12 
240 0.01 2.86 1.00 1.72 0.01 3.71 2.14 2.94 
245 0.01 3.04 1.00 1.36 0.01 3.92 2.10 2.91 
250 0.01 3.03 1.00 1.00 0.01 3.86 2.11 2.46 
255 0.01 3.69 1.00 1.51 0.01 4.43 2.25 2.69 
260 0.01 3.27 1.36 2.80 0.01 4.15 2.30 3.45 
265 0.01 3.11 1.03 1.83 0.01 4.03 2.22 3.04 
270 0.01 2.60 1.07 2.77 0.01 3.57 2.04 3.59 
275 0.01 3.66 1.21 2.91 0.01 4.50 2.26 3.59 
280 0.01 3.43 1.00 1.91 0.01 4.07 2.45 3.10 
285 0.01 3.83 1.00 1.53 0.01 4.50 2.22 2.81 
290 0.01 4.56 1.13 2.89 0.01 5.36 2.28 3.51 
295 0.01 3.89 1.06 3.05 0.01 4.73 2.43 3.89 
300 0.01 3.57 2.12 3.42 0.01 4.37 2.97 4.09 
305 0.01 2.96 1.00 3.12 0.01 3.83 2.29 3.94 
310 0.01 3.37 1.13 2.38 0.01 4.15 2.30 3.17 
315 0.01 3.87 1.01 2.60 0.01 4.73 2.34 3.31 
320 0.01 3.76 1.57 3.20 0.01 4.65 2.68 3.94 
325 0.01 4.24 1.02 3.52 0.01 5.24 2.43 4.23 
330 0.01 3.65 1.00 2.16 0.01 4.63 2.29 3.21 
335 0.01 3.49 1.00 3.99 0.01 4.44 2.42 4.81 
340 0.01 4.16 1.87 3.39 0.01 5.01 2.95 4.11 
345 0.01 4.25 1.94 3.16 0.01 5.05 2.86 3.98 
350 0.01 3.89 1.10 2.79 0.01 4.64 2.29 3.70 
355 0.01 3.70 1.00 3.96 0.01 4.42 2.43 4.41 
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Table A-4: Estimated KK and WW parameters for run34690 (incidence angle of 67.2o). 
KK parameters WW parameters Azimuth 

angle (o) k  ρ  (HH) ρ  (VV) ρ  (HV) k  ρ  (HH) ρ  (VV) ρ  (HV) 
0 0.01 5.19 1.37 3.40 0.01 6.16 2.59 4.01 
5 0.01 6.22 1.85 4.44 0.01 7.37 2.16 4.93 
10 0.01 8.78 1.07 5.93 0.01 10.67 2.29 6.71 
15 0.01 5.74 1.00 3.04 0.01 6.71 2.13 3.84 
20 0.01 6.62 1.00 3.31 0.01 7.85 1.91 3.94 
25 0.01 5.75 1.00 2.99 0.01 6.64 2.12 3.50 
30 0.01 7.44 1.00 3.86 0.01 8.78 2.55 4.37 
35 0.01 7.41 1.00 3.33 0.01 8.76 2.54 3.82 
40 0.01 6.46 1.00 3.08 0.01 7.63 2.39 3.64 
45 0.01 6.36 1.06 3.57 0.01 7.54 2.96 4.14 
50 0.01 5.11 1.00 2.37 0.01 6.24 3.37 3.30 
55 0.01 5.45 1.00 3.32 0.01 6.43 3.83 3.85 
60 0.01 6.29 1.00 3.17 0.01 7.44 3.52 3.62 
65 0.01 4.78 1.00 3.03 0.01 5.63 2.55 3.49 
70 0.01 5.16 1.00 2.73 0.01 6.03 2.60 3.23 
75 0.01 5.26 1.00 2.98 0.01 6.21 3.21 3.46 
80 0.01 6.12 1.00 3.25 0.01 7.21 2.88 3.71 
85 0.01 7.28 1.00 3.48 0.01 8.52 2.71 3.82 
90 0.01 5.40 1.15 3.29 0.01 6.48 2.50 3.80 
95 0.01 6.15 1.17 4.33 0.01 7.19 2.89 4.79 

100 0.01 6.77 1.00 3.78 0.01 7.92 3.12 4.14 
105 0.01 6.99 1.00 4.72 0.01 8.22 2.76 5.12 
110 0.01 8.46 1.06 5.76 0.01 10.03 2.70 6.31 
115 0.01 6.03 1.00 3.48 0.01 7.13 2.43 3.95 
120 0.01 9.11 1.00 4.88 0.01 10.87 2.18 5.31 
125 0.01 6.74 1.00 3.99 0.01 7.95 2.46 4.34 
130 0.01 7.05 1.00 4.87 0.01 8.21 2.10 5.45 
135 0.01 5.88 1.00 3.68 0.01 6.85 1.84 4.20 
140 0.01 6.99 1.43 4.63 0.01 8.27 2.04 5.03 
145 0.01 6.08 1.57 3.69 0.01 7.38 2.17 4.23 
150 0.01 6.65 1.00 3.02 0.01 8.09 2.69 3.71 
155 0.01 7.35 1.88 4.39 0.01 8.90 2.45 4.89 
160 0.01 5.75 1.49 2.76 0.01 7.02 2.57 3.46 
165 0.01 6.49 2.02 3.19 0.01 7.86 2.27 3.84 
170 0.01 9.23 3.67 3.19 0.01 11.11 2.58 3.61 
175 0.01 6.64 1.39 3.40 0.01 8.09 2.82 4.03 
180 0.01 6.51 1.00 3.39 0.01 7.87 2.84 3.88 
185 0.01 8.67 1.69 5.76 0.01 10.53 2.87 6.18 
195 0.01 6.98 1.00 1.26 0.01 8.55 3.50 2.62 
200 0.01 7.82 1.25 1.26 0.01 9.51 2.39 2.60 
205 0.01 6.39 1.09 1.85 0.01 7.77 2.37 2.80 
210 0.01 7.13 1.10 1.94 0.01 8.58 2.61 2.87 
215 0.01 7.10 1.00 2.30 0.01 8.67 2.53 3.17 
220 0.01 6.08 1.15 2.37 0.01 7.39 2.55 3.24 
225 0.01 7.34 1.71 3.25 0.01 8.91 2.24 3.60 
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KK parameters WW parameters Azimuth 
angle (o) k  ρ  (HH) ρ  (VV) ρ  (HV) k  ρ  (HH) ρ  (VV) ρ  (HV) 

230 0.01 7.30 1.02 3.86 0.01 8.93 2.39 4.54 
235 0.01 7.27 1.33 2.02 0.01 9.00 2.34 2.78 
240 0.01 8.06 1.39 2.53 0.01 9.92 2.21 3.25 
245 0.01 6.84 1.00 2.74 0.01 8.26 2.14 3.33 
250 0.01 7.73 1.00 2.71 0.01 9.38 2.10 3.39 
255 0.01 4.82 1.00 1.00 0.01 5.94 2.11 2.24 
260 0.01 7.33 1.00 1.39 0.01 9.01 2.25 2.40 
265 0.01 5.19 1.00 1.64 0.01 6.28 2.30 2.57 
270 0.01 8.28 1.28 3.30 0.01 10.09 2.22 4.07 
275 0.01 6.18 1.00 1.00 0.01 7.51 2.04 2.24 
280 0.01 4.62 1.00 1.46 0.01 5.60 2.26 2.50 
285 0.01 6.03 1.00 1.56 0.01 7.20 2.45 2.32 
290 0.01 6.30 1.00 1.83 0.01 7.55 2.22 2.55 
295 0.01 6.00 1.17 2.18 0.01 7.22 2.28 2.87 
300 0.01 5.63 1.00 2.53 0.01 6.84 2.43 3.12 
305 0.01 5.25 1.00 2.42 0.01 6.38 2.97 3.02 
310 0.01 5.91 1.00 2.26 0.01 7.18 2.29 2.79 
315 0.01 5.29 1.00 2.97 0.01 6.27 2.30 3.29 
320 0.01 5.77 1.00 2.92 0.01 6.93 2.34 3.33 
325 0.01 4.30 1.00 2.39 0.01 5.33 2.68 3.06 
330 0.01 5.59 1.00 3.75 0.01 6.74 2.43 4.19 
335 0.01 7.26 1.49 3.65 0.01 8.80 2.29 4.06 
340 0.01 7.51 1.00 3.79 0.01 9.06 2.42 4.20 
345 0.01 6.65 1.71 4.28 0.01 8.13 2.95 5.01 
350 0.01 8.44 1.39 4.21 0.01 10.30 2.86 4.76 
355 0.01 7.28 1.60 4.78 0.01 8.89 2.29 5.38 
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